Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Current methods of identifying the ionizing source of nebular emission in galaxies are well defined for the era of single-fiber spectroscopy, but still struggle to differentiate the complex and overlapping ionization sources in some galaxies. With the advent of integral field spectroscopy, the limits of these previous classification schemes are more apparent. We propose a new method for distinguishing the ionizing source in resolved galaxy spectra by use of a multidimensional diagnostic diagram that compares emission-line ratios with velocity dispersion on a spaxel-by-spaxel basis within a galaxy. This new method is tested using the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph Galaxy Survey (SAMI) Data Release 3 (DR3), which contains 3068 galaxies atz< 0.12. Our results are released as ionization maps available alongside the SAMI DR3 public data. Our method accounts for a more diverse range of ionization sources than the standard suite of emission-line diagnostics; we find 1433 galaxies with a significant contribution from non-star-forming ionization using our improved method as compared to 316 galaxies identified using only emission-line ratio diagnostics. Within these galaxies, we further identify 886 galaxies hosting unique signatures inconsistent with standard ionization by Hiiregions, active galactic nuclei, or shocks. These galaxies span a wide range of masses and morphological types and comprise a sizable portion of the galaxies used in our sample. With our revised method, we show that emission-line diagnostics alone do not adequately differentiate the multiple ways to ionize gas within a galaxy.more » « less
- 
            ABSTRACT We study environmental quenching using the spatial distribution of current star formation and stellar population ages with the full SAMI Galaxy Survey. By using a star formation concentration index [C-index, defined as log10(r50, H α/r50, cont)], we separate our sample into regular galaxies (C-index ≥−0.2) and galaxies with centrally concentrated star formation (SF-concentrated; C-index <−0.2). Concentrated star formation is a potential indicator of galaxies currently undergoing ‘outside-in’ quenching. Our environments cover ungrouped galaxies, low-mass groups (M200 ≤ 1012.5M⊙), high-mass groups (M200 in the range 1012.5–14 M⊙) and clusters (M200 > 1014M⊙). We find the fraction of SF-concentrated galaxies increases as halo mass increases by 9 ± 2 per cent, 8 ± 3 per cent, 19 ± 4 per cent, and 29 ± 4 per cent for ungrouped galaxies, low-mass groups, high-mass groups, and clusters, respectively. We interpret these results as evidence for ‘outside-in’ quenching in groups and clusters. To investigate the quenching time-scale in SF-concentrated galaxies, we calculate light-weighted age (AgeL) and mass-weighted age (AgeM) using full spectral fitting, as well as the Dn4000 and HδA indices. We assume that the average galaxy age radial profile before entering a group or cluster is similar to ungrouped regular galaxies. At large radius (1–2 Re), SF-concentrated galaxies in high-mass groups have older ages than ungrouped regular galaxies with an age difference of 1.83 ± 0.38 Gyr for AgeL and 1.34 ± 0.56 Gyr for AgeM. This suggests that while ‘outside-in’ quenching can be effective in groups, the process will not quickly quench the entire galaxy. In contrast, the ages at 1–2 Re of cluster SF-concentrated galaxies and ungrouped regular galaxies are consistent (difference of 0.19 ± 0.21 Gyr for AgeL, 0.40 ± 0.61 Gyr for AgeM), suggesting the quenching process must be rapid.more » « less
- 
            ABSTRACT We investigate the mean locally measured velocity dispersions of ionized gas (σgas) and stars (σ*) for 1090 galaxies with stellar masses $$\log \, (M_{\!\ast }/M_{\odot }) \ge 9.5$$ from the SAMI Galaxy Survey. For star-forming galaxies, σ* tends to be larger than σgas, suggesting that stars are in general dynamically hotter than the ionized gas (asymmetric drift). The difference between σgas and σ* (Δσ) correlates with various galaxy properties. We establish that the strongest correlation of Δσ is with beam smearing, which inflates σgas more than σ*, introducing a dependence of Δσ on both the effective radius relative to the point spread function and velocity gradients. The second strongest correlation is with the contribution of active galactic nuclei (AGN) (or evolved stars) to the ionized gas emission, implying that the gas velocity dispersion is strongly affected by the power source. In contrast, using the velocity dispersion measured from integrated spectra (σap) results in less correlation between the aperture-based Δσ (Δσap) and the power source. This suggests that the AGN (or old stars) dynamically heat the gas without causing significant deviations from dynamical equilibrium. Although the variation of Δσap is much smaller than that of Δσ, a correlation between Δσap and gas velocity gradient is still detected, implying that there is a small bias in dynamical masses derived from stellar and ionized gas velocity dispersions.more » « less
- 
            null (Ed.)ABSTRACT We measure the gas-phase metallicity gradients of 248 galaxies selected from Data Release 2 of the SAMI Galaxy Survey. We demonstrate that there are large systematic discrepancies between the metallicity gradients derived using common strong emission line metallicity diagnostics. We determine which pairs of diagnostics have Spearman’s rank coefficients greater than 0.6 and provide linear conversions to allow the accurate comparison of metallicity gradients derived using different strong emission line diagnostics. For galaxies within the mass range 8.5 < log (M/M⊙) < 11.0, we find discrepancies of up to 0.11 dex/Re between seven popular diagnostics in the metallicity gradient–mass relation. We find a suggestion of a break in the metallicity gradient–mass relation, where the slope shifts from negative to positive, occurs between 9.5 < log (M/M⊙) < 10.5 for the seven chosen diagnostics. Applying our conversions to the metallicity gradient–mass relation, we reduce the maximum dispersion from 0.11 dex/Re to 0.02 dex/Re. These conversions provide the most accurate method of converting metallicity gradients when key emission lines are unavailable. We find that diagnostics that share common sets of emission line ratios agree best, and that diagnostics calibrated through the electron temperature provide more consistent results compared to those calibrated through photoionization models.more » « less
- 
            null (Ed.)ABSTRACT It has been proposed that S0 galaxies are either fading spirals or the result of galaxy mergers. The relative contribution of each pathway and the environments in which they occur remain unknown. Here, we investigate stellar and gas kinematics of 219 S0s in the SAMI Survey to look for signs of multiple formation pathways occurring across the full range of environments. We identify a large range of rotational support in their stellar kinematics, which correspond to ranges in their physical structure. We find that pressure-supported S0s with v/σ below 0.5 tend to be more compact and feature misaligned stellar and gas components, suggesting an external origin for their gas. We postulate that these S0s are consistent with being formed through a merger process. Meanwhile, comparisons of ellipticity, stellar mass, and Sérsic index distributions with spiral galaxies show that the rotationally supported S0s with v/σ above 0.5 are more consistent with a faded spiral origin. In addition, a simulated merger pathway involving a compact elliptical and gas-rich satellite results in an S0 that lies within the pressure-supported group. We conclude that two S0 formation pathways are active, with mergers dominating in isolated galaxies and small groups, and the faded spiral pathway being most prominent in large groups ($$10^{13}\lt \rm {M_{halo}}\lt 10^{14}$$).more » « less
- 
            ABSTRACT We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3, we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370–570 nm) and red (630–740 nm) optical wavelength ranges at spectral resolving power of R = 1808 and 4304, respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parametrized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics Data Central.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
